A New Euphane-Type Triterpene from Melia Azedarach

Wei Min ZHAO*, Cheng Qi FAN, Zhi ZHANG
Shanghai Institute of Materia Medica, Academia Sinica, 294 Taiyuan Road, Shanghai 200031

Abstract

A new Euphane-type triterpene, named azedarachic acid, was isolated from the fruits of Melia azedarach. Its structure was determined on the basis of NMR and MS experiments.

Keywords: Melia Azedarach, triterpene, azedarachic acid.

The family Meliaceae is well known for its limonoid components possessing insect antifeedant activity and those highly oxygenated triterpenes related to tirucallol (euphane type skeleton $)^{1,2}$. Melia azedarach is a plant of the family Meliaceae, distributed widely in China ${ }^{3}$. In order to find new limonoid with strong insect antifeedant activity and also interesting highly oxygenated triterpenes, we studied systematically the chemical components of Melia azedarach. In this paper, we report the structure elucidation of a new triterpene, named azedarachic acid.

Azedarachic acid was obtained as colorless gum, $[\alpha]_{\mathrm{D}}{ }^{22}-127.5\left(\mathrm{CHCl}_{3}\right.$, c 0.02$)$. FAB-MS exhibited a quasimolecular ion peak at $\mathrm{m} / \mathrm{z} 511[\mathrm{M}+\mathrm{Na}]^{+}$. In ${ }^{13} \mathrm{C}$ NMR spectrum, thirty carbon signals could be identified, among them there were one carboxylic carbon and seven methyl carbon signals, and no other methyl derived signals could be found. Azedarachic acid was thus suggested to be a triterpenoid. According to MS and ${ }^{13} \mathrm{C}$ NMR data, its molecular formulae was deduced to be $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{5}$.

Analysis of its ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra further revealed the existence of three hydroxyl groups and two trisubstituted carbon-carbon double bonds in the structure. Two signals at $\delta_{\mathrm{H}} 1.60(3 \mathrm{H}, \mathrm{br}$ s) and $1.67(3 \mathrm{H}, \mathrm{br}$ s) suggested allylic position of the two methyls, which was confirmed by their correlation relationship with an olefinic proton at $\delta 5.09(\mathrm{~m})$ in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. Further analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectra led to the deduction of the following fragments: $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{8}-$ $\mathrm{C}_{9}-\mathrm{C}_{11}-\mathrm{C}_{12}$ and $\mathrm{C}_{15}-\mathrm{C}_{16}-\mathrm{C}_{17}-\mathrm{C}_{20}-\mathrm{C}_{22}-\mathrm{C}_{23}-\mathrm{C}_{24}-\mathrm{C}_{26}\left(\mathrm{C}_{27}\right)$. In HMBC spectrum of azedarachic acid, a series of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long range correlation signals were observed, which enabled the linkage of above fragments and the rest seven methyls and seven quaternary carbons. From biogenetic point of view and results of HMBC experiment, azedarachic acid was also suggested to possess an euphane-type skeleton. The hydroxyl at C_{3} should possess β configuration considering the characteristic splitting pattern of H_{3} (dd, 11.3, 3.8). Two hydroxyl groups at C_{12} and C_{16} were determined to be both in β configuration by analyzing relevant NOE signals in NOESY spectrum. Using NOESY spectrum also
made further assignments of methylene protons in the tetracyclic system. The chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of azedarachic acid were listed in Table 1.

Scheme 1

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of azedarachic acid $\left(\mathrm{CDCl}_{3}\right)$.

No.	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	No		
1α	$1.67, \mathrm{~m}$	$37.3, \mathrm{t}$	15β	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$
1β	$1.67, \mathrm{~m}$		$2.24, \mathrm{~m}$		
2α	$1.12, \mathrm{~m}$	$27.8, \mathrm{t}$	17	$4.16, \mathrm{~m}$	$82.4, \mathrm{~d}$
2β	$1.63, \mathrm{~m}$		18	$53.4, \mathrm{~d}$	
3	$3.23, \mathrm{dd}, 11.3,3.8$	$79.2, \mathrm{~d}$	19	$0.81, \mathrm{~s}, 1.5$	$20.1, \mathrm{q}$
4		$39.2, \mathrm{~s}$	20	$0.76, \mathrm{~s}$	$13.2, \mathrm{q}$
5	$1.27, \mathrm{~m}$	$51.0, \mathrm{~d}$	21	$2.37, \mathrm{~m}$	$45.7, \mathrm{~d}$
6α	$2.18, \mathrm{~m}$	$24.2, \mathrm{t}$	22 a	$180.7, \mathrm{~s}$	
6β	$1.98, \mathrm{~m}$		22 b	$1.56, \mathrm{~m}$	$29.3, \mathrm{t}$
7	$5.32, \mathrm{~m}$	$119.5, \mathrm{~d}$	23 a	$1.98, \mathrm{~m}$	
8		$142.9, \mathrm{~s}$	23 b	$1.64, \mathrm{~m}$	$26.2, \mathrm{t}$
9	$2.30, \mathrm{~m}$	$48.7, \mathrm{~d}$	24	$2.14, \mathrm{~m}$	
10		$35.5, \mathrm{~s}$	25	$5.09, \mathrm{~m}$	$123.9, \mathrm{~d}$
11α	$1.47, \mathrm{~m}$	$30.3, \mathrm{t}$	26		$132.8, \mathrm{~s}$
11β	$2.31, \mathrm{~m}$		27	$1.60, \mathrm{br} \mathrm{s}$	$18.1, \mathrm{q}$
12	$3.98, \mathrm{dd}, 9.0,5.2$	$72.3, \mathrm{~d}$	28	$1.67, \mathrm{br} \mathrm{s}$	$25.9, \mathrm{q}$
13		$55.1, \mathrm{~s}$	29	$0.95, \mathrm{~s}$	$27.8, \mathrm{q}$
14		$44.6, \mathrm{~s}$	30	$0.85, \mathrm{~s}$	$14.8, \mathrm{q}$
15α	$1.68, \mathrm{~m}$	$36.4, \mathrm{t}$		$1.32, \mathrm{~s}$	$33.9, \mathrm{q}$

References

1. T.Nakanishi, A.Inada and D.Lavie, Chem. Pharm. Bull., 1986, 34(1), 100.
2. S.Siddiqui, T.Mahmood, B.S.Siddiqui and S.Faizi, Phytochemistry, 1986, 25(9), 2183.
3. Jiangsu new Medical College, "Dictionary of Chinese Traditional Medicine", Shanghai Science and Technology Publisher, Shanghai 1986, p. 1298.

Received 30 June 1998
Revised 1 Feb. 1999

